skip to main content


Search for: All records

Creators/Authors contains: "Kostic, Zoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 22, 2024
  2. Social distancing is an effective public health tool to reduce the spread of respiratory pandemics such as COVID-19. To analyze compliance with social distancing policies, we design two video-based pipelines for social distancing analysis, namely, Auto-SDA and B-SDA. Auto-SDA (Automated video-based Social Distancing Analyzer) is designed to measure social distancing using street-level cameras. To avoid privacy concerns of using street-level cameras, we further develop B-SDA (Bird’s eye view Social Distancing Analyzer), which uses bird’s eye view cameras, thereby preserving pedestrian’s privacy. We used the COSMOS testbed deployed in West Harlem, New York City, to evaluate both pipelines. In particular, Auto-SDA and B-SDA are applied on videos recorded by two of COSMOS cameras deployed on the 2nd floor (street-level) and 12th floor (bird’s eye view) of Columbia University’s Mudd building, looking at 120th St. and Amsterdam Ave. intersection, New York City. Videos are recorded before and during the peak of the pandemic, as well as after the vaccines became broadly available. The results represent the impact of social distancing policies on pedestrians’ social behavior. For example, the analysis shows that after the lockdown, less than 55% of the pedestrians failed to adhere to the social distancing policies, whereas this percentage increased to 65% after the vaccines’ availability. Moreover, after the lockdown, 0-20% of the pedestrians were affiliated with a social group, compared to 10-45% once the vaccines became available. The results also show that the percentage of face-to-face failures has decreased from 42.3% (pre-pandemic) to 20.7%(after the lockdown). 
    more » « less
  3. Crowded metropolises present unique challenges to the potential deployment of autonomous vehicles. Safety of pedestrians cannot be compromised and personal privacy must be preserved. Smart city intersections will be at the core of Artificial Intelligence (AI)-powered citizen-friendly traffic management systems for such metropolises. Hence, the main objective of this work is to develop an experimentation framework for designing applications in support of secure and efficient traffic intersections in urban areas. We integrated a camera and a programmable edge computing node, deployed within the COSMOS testbed in New York City, with an Eclipse sensiNact data platform provided by Kentyou. We use this pipeline to collect and analyze video streams in real-time to support smart city applications. In this demo, we present a video analytics pipeline that analyzes the video stream from a COSMOS’ street-level camera to extract traffic/crowd-related information and sends it to a dedicated dashboard for real-time visualization and further assessment. This is done without sending the raw video, in order to avoid violating pedestrians’ privacy. 
    more » « less
  4. Social distancing can reduce the infection rates in respiratory pandemics such as COVID-19. Traffic intersections are particularly suitable for monitoring and evaluation of social distancing behavior in metropolises. Hence, in this paper, we propose and evaluate a real-time privacy-preserving social distancing analysis system (B-SDA), which uses bird’s-eye view video recordings of pedestrians who cross traffic intersections. We devise algorithms for video pre-processing, object detection, and tracking which are rooted in the known computer-vision and deep learning techniques, but modified to address the problem of detecting very small objects/pedestrians captured by a highly elevated camera. We propose a method for incorporating pedestrian grouping for detection of social distancing violations, which achieves 0.92 F1 score. B-SDA is used to compare pedestrian behavior in pre-pandemic and during-pandemic videos in uptown Manhattan, showing that the social distancing violation rate of 15.6% during the pandemic is notably lower than 31.4% prepandemic baseline. Keywords—Social distancing, Object detection, Smart city, Testbeds 
    more » « less
  5. Traffic intersections are prime locations for deployment of infrastructure sensors and edge computing nodes to realize the vision of a smart city. It is expected that the needs of a smart city, in regards to traffic and pedestrian traffic systems monitored by cameras/video, can be met by using stateof-the-art artificial-intelligence (AI) based object detectors and trackers. A critical component in designing an effective real-time object detection/tracking pipeline is the understanding of how object density, i.e., the number of objects in a scene, and imageresolution and frame rate influence the performance metrics. This study explores the accuracy and speed metrics with the goal of supporting pipelines that meet the precision and latency needs of a real-time environment. We examine the impact of varying image-resolution, frame rate and object-density on the object detection performance metrics. The experiments on the COSMOS testbed dataset show that varying the frame width from 416 pixels to 832 pixels, and cropping the images to a square resolution, result in the increase in average precision for all object classes. Decreasing the frame rate from 15 fps to 5 fps preserves more than 90% of the highest F1 score achieved for all object classes. The results inform the choice of video preprocessing stages, modifications to established AI-based object detection/tracking methods, and suggest optimal hyper-parameter values. Index Terms—Object Detection, Smart City, Video Resolution, Deep Learning Models. 
    more » « less